

MANUAL DE SERVICIO TÉCNICO

ICE QUEEN

MODELOS:

IQ 45 IQ 50 IQ 85 135 IQ IQ 150 IQ 200 IQ 400 IQ 550 **IQ** 1100 **GIQ** 550 **GIQ** 1100

LEA ATENTAMENTE ESTE MANUAL, SOBRE TODO LOS APARTADOS DE INSTALACIÓN Y MANTENIMIENTO.

LA INSTALACIÓN DE ESTE APARATO DEBE SER REALIZADA POR EL SERVICIO DE ASISTENCIA TÉCNICA.

FECHA ÚLTIMA REVISIÓN

Noviembre 2013

ÍNDICE

1. IN	ITRODUCCIÓN	4
1.1.	Advertencias	4
1.2.	Descripción	5
1.3.	Principio de funcionamiento	5
1.4.	Esquemas eléctricos	7
2. E	SPECIFICACIONES	14
2.1.	Tabla de Producciones	23
2.2.	Consideraciones acerca de la fabricación de hielo en escamas	27
3. R	ECEPCIÓN DE LA MÁQUINA	28
4. IN	ISTALACIÓN	29
4.1.	Condiciones del local de emplazamiento	29
4.2.	Agua y desagüe	30
4.3.	Conexión eléctrica	30
4.4.	Montaje del cono de dispersión	31
5. P	UESTA EN MARCHA	31
5.1.	Comprobación previa	31
5.2.	Puesta en marcha	32
5.3.	Comprobación y regulación del nivel en la cuba de agua	33
5.4.	Comprobación de seguridad	33
6. R	EGULACIONES	34
6.1.	Válvula de expansión	34
6.2.	Nivel de agua	34
6.3.	Válvula presostática de agua	35
6.4.	Presostato de ventilador (condensación aire)	35
6.5.	Temporizador de arranque	36
6.6.	Elementos de protección de la máquina	36
7. P	ROCEDIMIENTOS PARA REEMPLAZAR O COMPROBAR ELEMENTOS	37
7.1.	Cojinete inferior	37
7.2.	Reductor de velocidad	38
7.3.	Plato / Brida superior	38
7.4.	Cojinete superior (según modelos)	39
8. <i>I</i> N	ISTRUCCIONES Y PROCEDIMIENTOS DE MANTENIMIENTO Y LIMPIEZA	40
8.1.	Condensador de agua	42

		WANDAE DE SERVICIO TECNICO	ICE QUEEN
8.2.	Condensador de aire		42
8.3.	Evaporador / Cuba de agua		42
9. C	ONSIDERACIONES DEL USO DE	L REFRIGERANTE R404	43
10.	TABLA DE INCIDENCIAS		44

1. INTRODUCCIÓN

1.1. Advertencias

La instalación de este aparato debe ser realizada por el Servicio de Asistencia Técnica.

La clavija de toma de corriente debe quedar en un sitio accesible

Desconectar SIEMPRE la máquina de la red eléctrica ANTES de proceder a cualquier operación de limpieza o manutención.

Cualquier modificación que fuese necesaria en la instalación eléctrica para la perfecta conexión de la maquina, deberá ser efectuada exclusivamente por personal profesionalmente cualificado y habilitado.

Cualquier utilización del productor de escamas que no sea el de producir hielo, utilizando agua potable, es considerado inadecuado

Modificar o tratar de modificar este aparato, además de anular cualquier forma de garantía, es extremadamente peligroso.

El aparato no debe ser utilizado por niños pequeños o personas discapacitadas sin supervisión.

Los niños pequeños deben ser vigilados para asegurar que no juegan con el aparato.

No debe ser utilizado al aire libre ni expuesto a la lluvia.

Conectar a la red de agua potable.

La máquina se debe conectar mediante el cable de alimentación suministrado con la misma. No está prevista para ser conectada a una canalización fija.

Para garantizar la eficiencia de esta máquina y su correcto funcionamiento, es imprescindible ceñirse a las indicaciones del fabricante, SOBRE TODO EN LO QUE CONCIERNE A LAS OPERACIONES DE MANTENIMIENTO Y LIMPIEZA, que en la mayor parte de los casos deberá efectuarlas personal cualificado.

ATENCIÓN

No tratar de repararlo por uno mismo. La intervención de personas no competentes, además de ser peligrosa, puede causarle graves daños. En caso de desperfecto contactar con el distribuidor que se lo ha vendido. Le recomendamos exigir siempre repuestos originales.

Realizar la descarga y recuperación de los materiales o residuos en base a las disposiciones nacionales vigentes en la materia.

LE RECORDAMOS QUE LAS OPERACIONES DE MANTENIMIENTO Y LIMPIEZA NO ESTÁN INCLUIDAS EN LA GARANTÍA Y POR ELLO, SERÁN FACTURADAS POR EL INSTALADOR.

1.2. Descripción

Las características más destacables son:

- Carrocería de acero inoxidable 18 / 8
- Reductor de velocidad muy potente (24 Kg./ m. a 7 r.p.m.)
- Evaporador de cobre sobre tubo especial (HB 50) rectificado
- Husillo de acero inoxidable de gran dureza con posterior tratamiento superficial que le confiere una larga vida
- Salida de hielo por la parte inferior (Excepto IQ 45, 85)
- Reductor de velocidad instalado en la parte superior.

1.3. Principio de funcionamiento

El agua entra en el evaporador por la parte inferior hasta el nivel que determina una válvula de flotador.

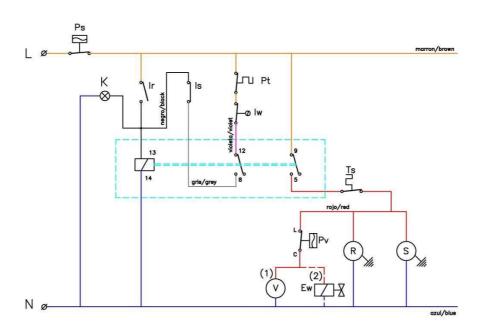
El agua en contacto con las paredes del evaporador se va congelando, y el hielo que se forma es rascado por el HUSILLO (sin fin) el cual además lo empuja hacia arriba, obligándolo a salir por la ventana.

El hielo circula por la boca de salida y cae al depósito.

Cuando se llena (el depósito), el hielo toca el basculante de paro y la máquina se para. En los modelos 45 y 85 la parada por llenado se realizará mediante un termostato. Volverá a conectar cuando este detecte que el nivel de hielo ha bajado.

Volverá a producir hielo cuando al consumirlo el nivel baje y no toque el basculante de paro.

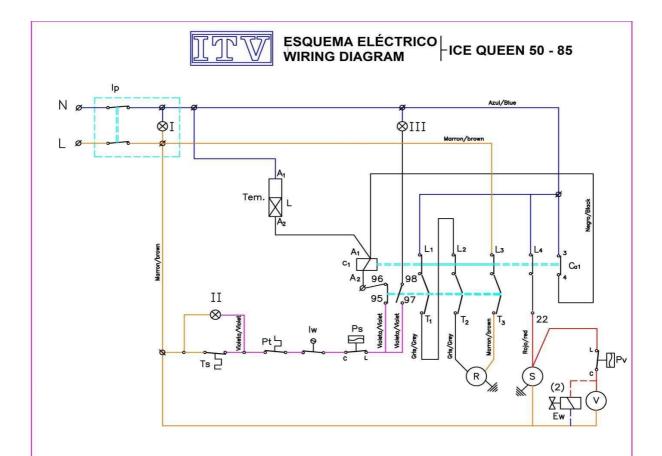
ATENCIÓN


Si la descarga se hace dentro de una cámara frigorífica, con la máquina muy lejana, hay que instalar un CONTROL DE NIVEL DE HIELO MECÁNICO. (Excepto 45, y 85)

Con el fin de que el hielo no se apelmace dentro de la cámara, aconsejamos conducirlo por un tubo de plástico (Diámetro 80-100 mm) y colocar en la salida el **CONO DE DISPERSIÓN SUMINISTRADO CON LA MÁQUINA** (todos los modelos). (Excepto 45 y 85).

1.4. Esquemas eléctrico

ESQUEMA ELÉCTRICO | ICE QUEEN 45C



- (1) SÓLO MÁQUINAS CONDENSADAS POR AIRE
- (2) SÓLO MÁQUINAS CONDENSADAS POR AGUA
- Pv. -Presostato ventilador
- -Ventilador
- Ew. -Electroválvula condensación
- S. -Compresor
- Ir. -Interruptor de marcha
- ls. -Interruptor de paro
- Ts. -Paro por llenado
- lw. -Micro boya falta de agua
- Ps. -Presostato de seguridad
- R. -Motorreductor
- Pt. -Protector térmico motor
- -LED Verde linea

- (1) ONLY AIR COOLED MODELS
- (2) ONLY WATER COOLED MODELS
- Pv. -Fan pressostat
- V. -Fan
- Ew. -Condenser water valve
- S. -Compressor Ir. -On switch
- ls. -Off switch
- Ts. -Full storage bin stop
- lw. -Water low level float switch
- Ps. -High pressure safety pressostat
- R. -Gearmotor
- Pt. -Motor thermal protection
- K -LED Green on

26/05/2008 plano: 24/10

Tem.-Temporizador a la conexion

C1 -Contactor

Pv. —Presostato ventilador (solo cond.por aire)
V. —Ventilador
S. —Compresor
Ip. —Interruptor de paro—marcha

Ts. —Paro por llenado lw. —Micro boya falta de agua Ps. —Presostato de seguridad

-Motoreductor

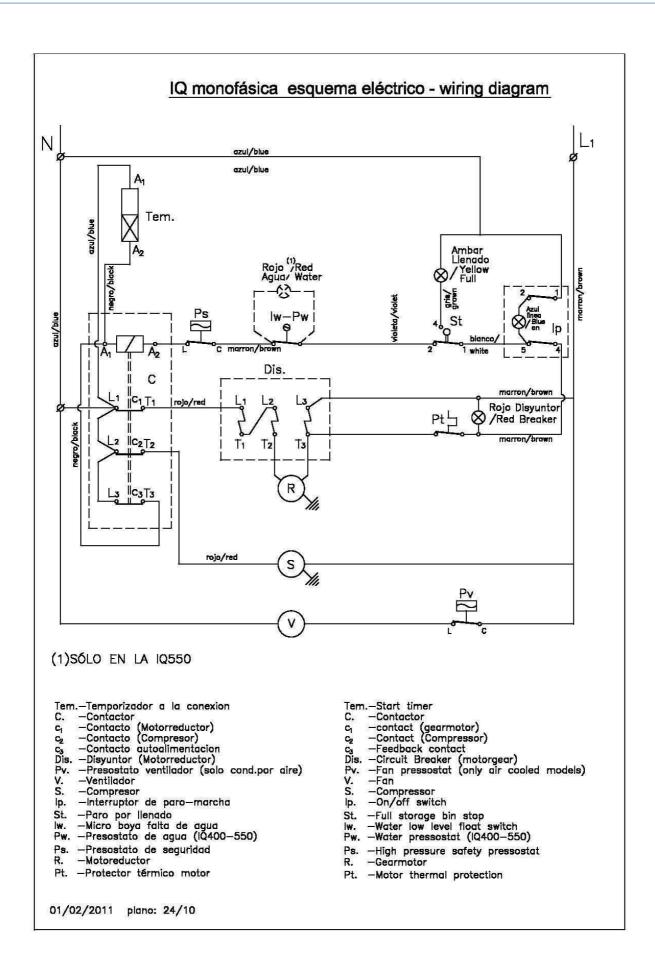
Pt. —Protector térmico motor Ew. —Electroválvula condensación

Tem.-Start timer

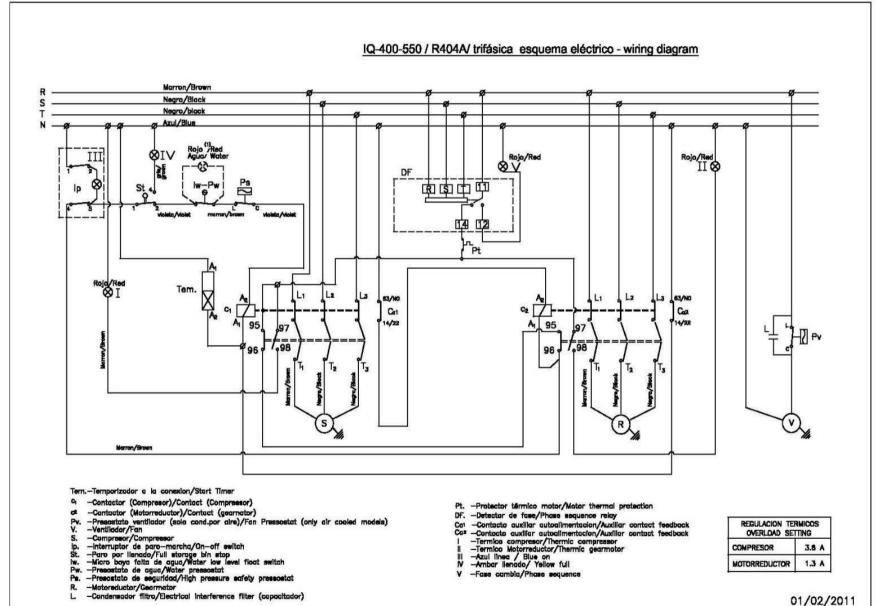
C1 -Contactor

Pv. —Fan pressostat (only air cooled models) V. —Fan

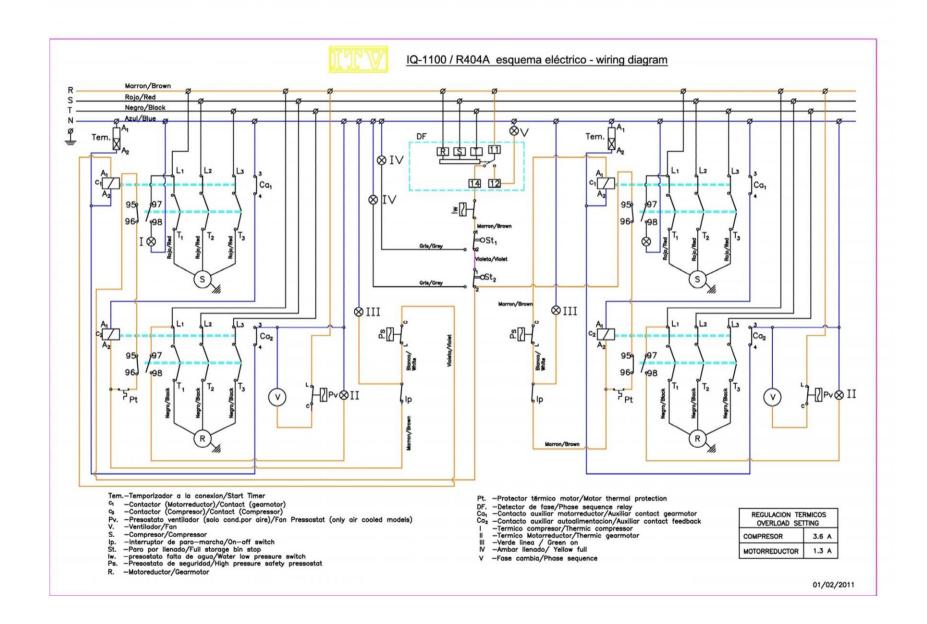
V. S. Ip. Ts.

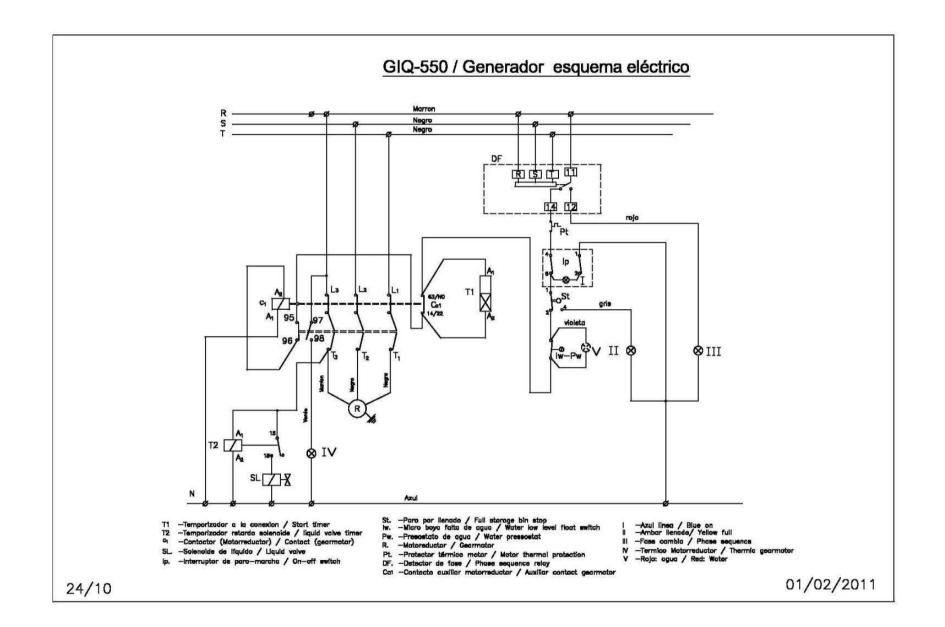

V. —ran
S. —Compressor
Ip. —On/off switch
Ts. —Full storage bin stop
Iw. —Water low level float switch
Ps. —High pressure safety pressostat

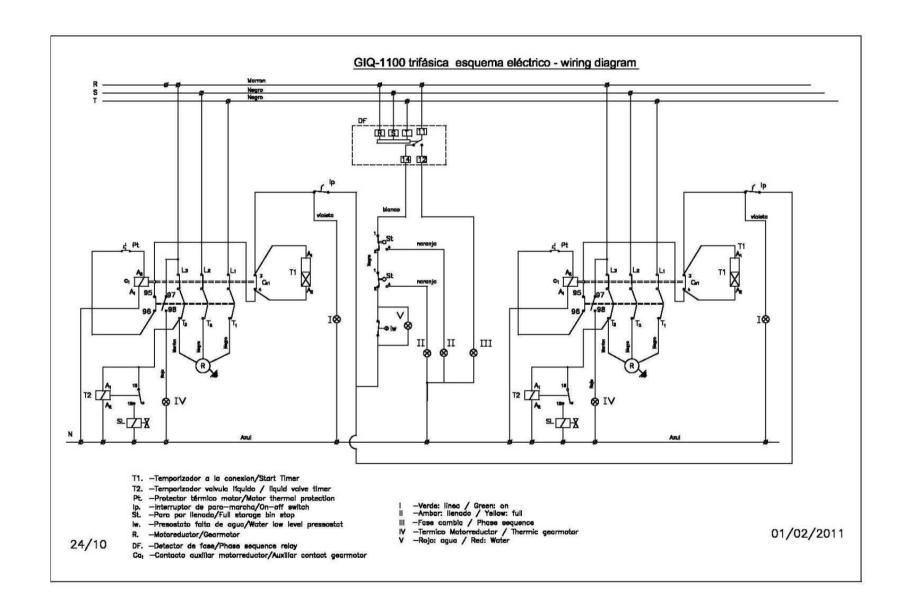
R. —Gearmotor
Pt. —Motor thermal protection
Ew. —Condenser water valve

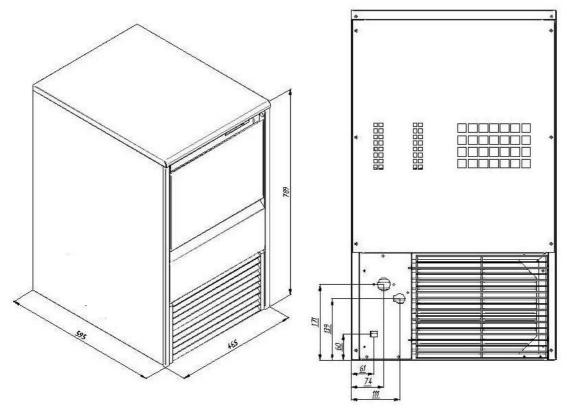

-Verde linea / Green on -Ambar llenado/ Yellow full

-Termico Motorreductor/Thermic gearmotor

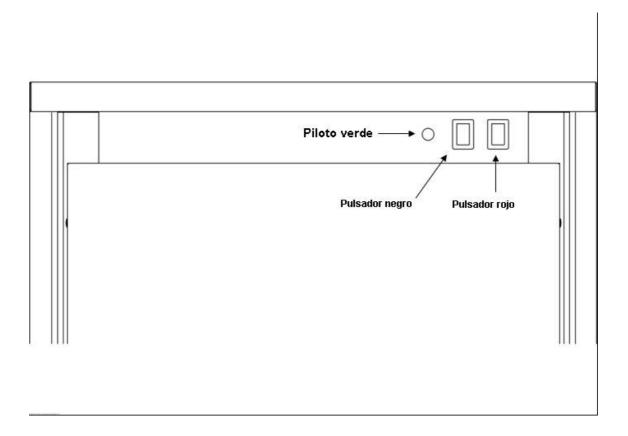








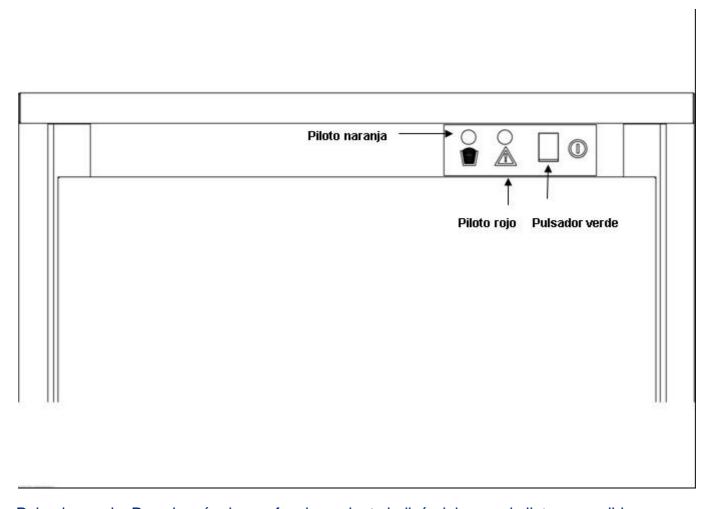
2. ESPECIFICACIONES


IQ 45, 85

MODELO	Dimensiones máquina Ancho x fondo x alto	Peso neto (KG)	Dimensiones embalado Ancho x fondo x alto	Peso bruto (KG)
Ice Queen 45	405x515x750	36	480x575x900	41
Ice Queen 50 - 85	465x595x795	58	535x685x850	63

MODELO	Producción	Consumo agua fabricación I/h	Consumo agua cond. L/h	Watios	Amp.	Volt/Hz
Ice Queen 45 A	40	1.6		460	2.2	220/50
Ice Queen 45W	42	1.6	8	460	2.2	220/50
Ice Queen 50 A	50	2.1		533	2.93	220/50
Ice Queen 50 W	50	2.1	20	533	2.93	220/50
Ice Queen 85 A	85	3.54		533	2.93	220/50
Ice Queen 85 W	85	3.54	20	533	2.93	220/50

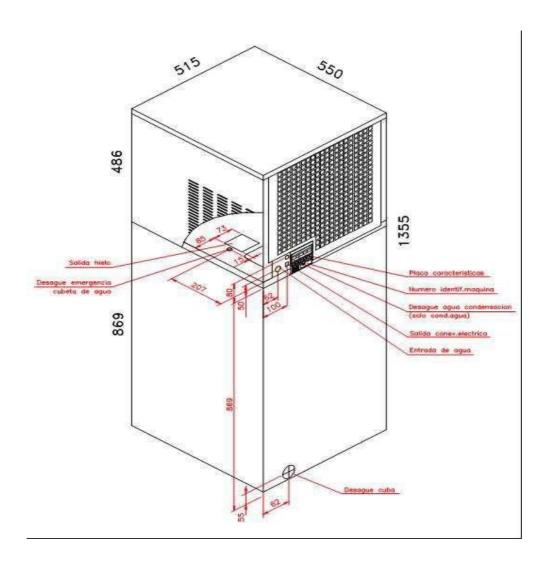
IQ 45C


Piloto verde: Indica que la máquina está activada. Puede estar parada por termostato de stock.

Pulsador negro: Pone la máquina en funcionamiento.

Pulsador rojo: Para la máquina completamente.

IQ 50 - 85



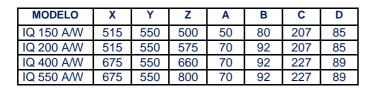
Pulsador verde: Pone la máquina en funcionamiento indicándolo con el piloto encendido.

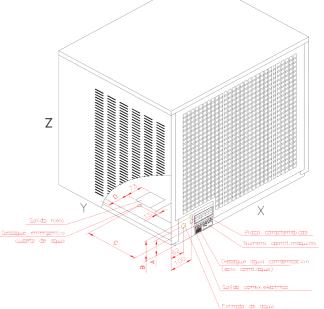
Piloto rojo: Nos indica que la máquina está parada por algún elemento de seguridad.

Piloto naranja: Nos indica cuando el almacén está lleno de hielo.

La altura aumenta en 80 mm cuando se colocan las patas.

MODELO	CAPACIDAD ALMACÉN HIELO (KG)	CONSUMO AGUA COND. L/HORA (1)	CONSUMO AGUA FABR. L/HORA (1)	PESO NETO (KG)	DIMENSIONES EMBALADO X*Y*Z	PESO BRUTO (KG)	VOLUMEN (M³)
IQ 135 A	60		5.5	70	615x650x146 5	85	0.58
IQ 135 W	60	40	5.5	68	615x650x146 5	83	0.58


MODELO	IODELO PRESIÓN EN ALTA				PRE EN E	SIÓN BAJA	INTENS. TOTAL	FUSIBLE SEGURIDAD	POTENCIA COMPRESOR	POTENCIA TOTAL ABSORBIDA
	MÍN	MÍNIMA		MÁXIMA		DIA	(2)		(1)	(2)
	Kg/cm	Psi	Kg/cm	Psi	Kg/cm	Psi	(A)	(A)	(W)	(W)
IQ 135 A	16	228	17	242	2.5	38	4.2	16	360	650
IQ 135 W	16	228	17	242	2.5	38	4.2	16	360	650



(1) Datos obtenidos con Tamb=20°C, Tentrada agua=15°C y calidad del agua=500ppm (2) Consumos máximos obtenidos a Tamb=43°C, según

(2) Consumos maximos obtenidos a Tamb=43°C, seg normas UNE para clasificación climática Clase T

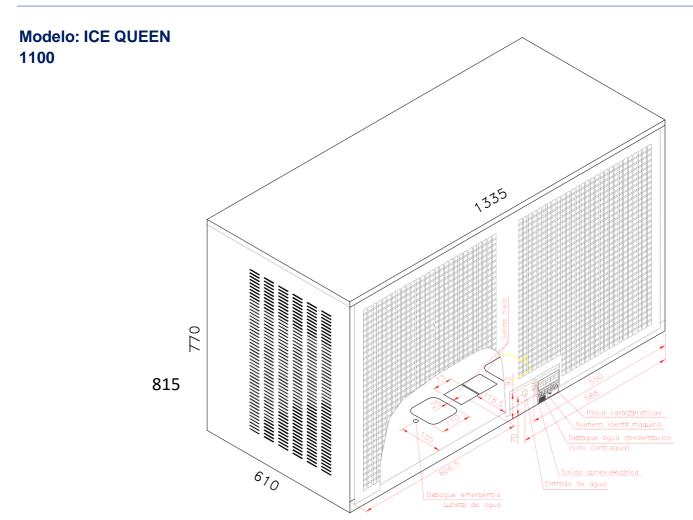
ICE QUEEN 150 / 200 / 400 / 500

MODELO	CONSUMO AGUA COND. L/HORA (1)	CONSUMO AGUA FABR. L/HORA (1)	PESO NETO (KG)	DIMENSIONES EMBALADO X*Y*Z	PESO BRUTO (KG)	VOLUMEN (M³)
IQ 150 A		5.6	45	600x630x580	55	0.20
IQ 150 W	40	5.6	43	600x630x580	53	0.20
IQ 200 A		8.5	52	600x630x650	60	0.23
IQ 200 W	60	8.5	50	600x630x650	58	0.23
IQ 400 A		16	85	750x650x750	94	0.33
IQ 400 W	114	16	80	750x650x750	89	0.33
IQ 550 A		25	95	750x650x900	115	0.39
IQ 550 W	177	25	93	750x650x900	113	0.39

MODELO	P	RESIÓN	EN ALT	Ά		PRESIÓN EN BAJA		FUSIBLE SEGURIDAD	POTENCIA COMPRESOR	POTENCIA TOTAL ABSORBIDA
	MÍNIMA MÁXIMA		AMI	MEDIA		(2)		(1)	(2)	
	Kg/cm	Psi	Kg/cm	Psi	Kg/cm	Psi	(A)	(A)	(W)	(W)
IQ 150 A	16	228	17	242	2.3	33.4	4.2	16	450	750
IQ 150 W	16	228	17	242	2.3	33.4	4.2	16	365	660
IQ 200 A	16	228	17	242	2.3	33.4	4.6	16	550	950
IQ 200 W	16	228	17	242	2.3	33.4	4.6	16	440	800
IQ 400 A	16	228	17	242	2.3	33.4	6	16	900	1250
IQ 400 W	16	228	17	242	2.3	33.4	6	16	900	1250
IQ 550 A	16	228	17	242	2.3	33.4	10	20	1500	2000
IQ 550 W	16	228	17	242	2.3	33.4	10	20	1500	2000

(1) Datos obtenidos con Tamb=20°C, Tentrada agua=15°C y calidad del agua=500ppm

(2) Consumos máximos obtenidos a Tamb=43°C, según normas UNE para clasificación climática Clase T (TROPICALIZADA).


Nota.- En el modelo Ice Queen 400 y 550 la expansión es controlada por válvula. En el resto se realiza con

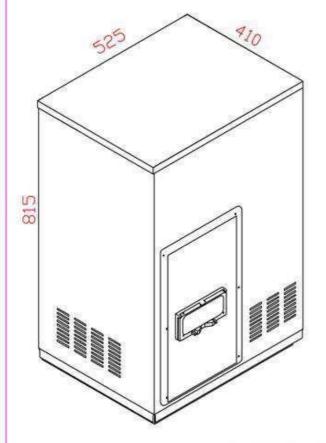
Modelo: ICE QUEEN 400 & 550 380V+III+N

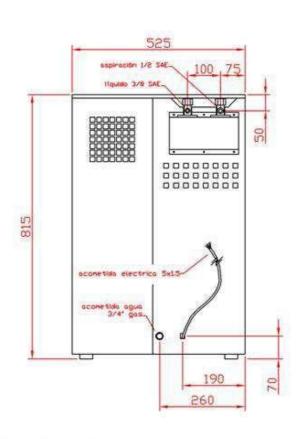
MODELO	PRESIÓN EN ALTA		Ά	PRESIÓN EN BAJA		INTEN S.TOT AL	FUSIBLE SEGURIDAD	POTENCIA COMPRESOR	POTENCIA TOTAL ABSORBIDA	
	MÍN	IMA	MÁX	(IMA	MI	EDIA	(2)		(1)	(2)
	Kg/cm	Psi	Kg/cm	Psi	Kg/cm	Psi	(A)	(A)	(W)	(W)
IQ 400 A	16	228	17	242	2.3	33.4	3.5	10	750	1350
IQ 400 W	16	228	17	242	2.3	33.4	3.5	10	750	1350
IQ 550 A	16	228	17	242	2.3	33.4	5	16	2200	2700
IQ 550 W	16	228	17	242	2.3	33.4	5	16	2200	2700

⁽¹⁾ Datos obtenidos con Tamb=20°C, Tentrada agua=15°C y calidad del agua=500ppm (2) Consumos máximos obtenidos a Tamb=43°C, según normas UNE para clasificación climática Clase T (TROPICALIZADA). Nota.- Expansión controlada por válvula.

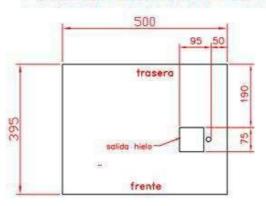
MODELO	CONSUMO AGUA COND. L/HORA (1)	CONSUMO AGUA FABR. L/HORA (1)	PESO NETO (KG)	DIMENSIONES EMBALADO X*Y*Z	PESO BRUTO (KG)	VOLUMEN (M³)
IQ 1100 A		50	192	1400x685x950	225	0.80
IQ 1100W	354	50	185	1400x685x950	218	0.80

MODELO	PRESION EN ALTA					S.TOT AL	FUSIBLE SEGURIDAD	POTENCIA COMPRESOR	POTENCIA TOTAL ABSORBIDA	
	MÍNIMA MÁXIM		AMI	MEDIA		(2)		(1)	(2)	
	Kg/cm	Psi	Kg/cm	Psi	Kg/cm	Psi	(A)	(A)	(W)	(W)
IQ 1100 A	16	228	17	242	2.3	33.4	9	2x16	2x2200	2x2700
IQ 1100 W	16 228 17 242		2.3	33.4	9	2x16	2x2200	2x2700		


NOTA: - Expansión controlada por válvula de expansión.

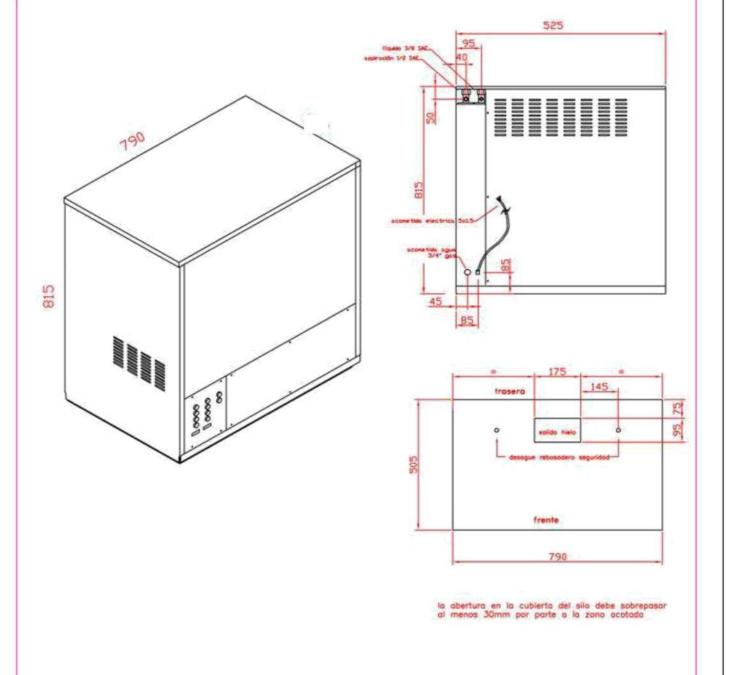

⁽¹⁾ Datos obtenidos con Tamb=20°C, Tentrada agua=15°C y calidad del agua=500ppm (2) Consumos máximos obtenidos a Tamb=43°C, según normas UNE para clasificación climática Clase T (TROPICALIZADA).

⁻ Alimentación III + N + T (380 V/ 50 Hz)



GENERADOR ICE QUEEN 550

POSICIÓN SALIDA DE HIELO



la abertura en la cubierta del silo debe sobrepasar al menos 30mm por parte a la zona acotada

14/1/05 -- \24\24-00.DWG

12/4/05 -- \24\24-00.DWG

2.1. Tabla de Producciones

				IQ 50										
Kg	/ 24h	Temp. ambiente ℃												
		10	15	20	25	30	35	40						
	5	68	67	61	57	50	63	39						
	10	62	60	59	54	50	44	37						
a C	15	60	59	58	52	47	43	36						
Temp. agua	20	57	54	49	46	41	35	33						
Tem	25	55	50	47	44	38	32	29						
	30	51	48	44	41	35	30	26						
	35	49	45	42	39	32	27	23						

	IQ 85							
Kg	/ 24h	Temp. ambiente ℃						
		10	15	20	25	30	35	40
	5	91	90	87	84	79	73	67
	10	89	87	85	81	77	71	64
a C	15	85	83	81	77	73	67	60
Temp. agua	20	80	79	76	73	68	62	55
Tem	25	74	73	70	67	62	56	49
	30	67	65	63	59	55	49	42
	35	58	57	55	51	46	41	34

	IQ 135							
Kg/	24h			Temp	. ambie	nte °C		
		10	15	20	25	30	35	40
	5	144	142	141	139	136	134	119
	10	142	141	138	135	134	124	114
la C	15	134	132	131	126	123	118	111
Temp. agua	20	128	126	123	121	120	115	102
Temp	25	126	124	121	119	111	110	98
	30	124	122	119	115	109	106	82
	35	120	118	114	110	106	102	78

	IQ 150							
Kg/	24h			Temp	. ambie	nte °C		
		10	15	20	25	30	35	40
	5	150	145	11	139	137	129	120
	10	145	144	139	137	128	122	118
a C	15	141	138	136	129	123	119	109
Temp. agua	20	137	134	124	122	120	117	107
Temp	25	134	124	122	120	118	115	104
	30	124	121	119	117	115	113	101
	35	122	120	116	114	112	104	97

	IQ 200							
Kg/	24h			Temp	. ambieı	nte °C		
		10	15	20	25	30	35	40
	5	224	221	213	210	207	204	198
	10	220	211	209	206	204	196	192
la C	15	211	208	205	202	194	190	184
Temp. agua	20	208	205	201	191	188	176	169
Temp	25	204	200	190	187	14	168	155
	30	198	190	186	174	168	154	143
	35	188	185	173	167	154	142	136

IQ 400								
Kg/	24h			Temp	. ambieı	nte ℃		
		10	15	20	25	30	35	40
	5	430	418	410	400	385	370	352
	10	420	409	405	395	378	360	342
ia C	15	412	400	387	378	372	354	334
Temp. agua	20	395	375	365	360	360	338	324
Temp	25	380	365	354	343	332	313	306
	30	360	346	335	325	310	287	275
	35	340	326	315	308	300	275	255

	IQ 550								
Kg/	24h			Temp	. ambie	nte ℃			
		10	15	20	25	30	35	40	
	5	630	626	622	611	600	520	500	
	10	608	589	570	568	566	510	480	
ia C	15	575	567	560	549	538	490	454	
Temp. agua	20	545	540	535	522	510	455	430	
Temp	25	525	520	515	500	480	435	405	
	30	506	502	498	486	465	425	390	
	35	495	488	482	471	455	405	375	

	IQ 1100							
Kg/	24h			Temp	. ambieı	nte ℃		
		10	15	20	25	30	35	40
	5	1260	1252	1244	1222	1200	1040	1000
	10	1216	1178	1140	1136	1132	1020	960
<u>a</u> င	15	1150	1134	1120	1098	1076	980	908
Temp. agua	20	1090	1080	1070	1044	1020	910	860
Temp	25	1050	1040	1030	1000	960	870	810
	30	1012	1004	996	972	930	850	780
	35	990	976	964	942	910	810	750

2.2. Consideraciones acerca de la fabricación de hielo en escamas

ATENCIÓN: LA PRODUCCIÓN DE LAS TABLAS ES CON AGUA DE 500 ppm.

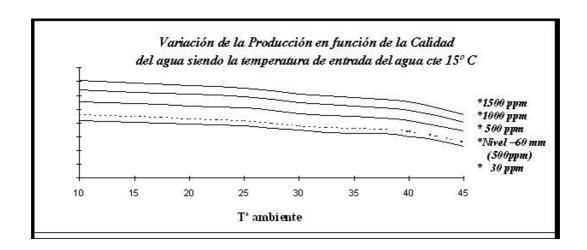
LA PRODUCCIÓN MARCADA EN LA INFORMACIÓN COMERCIAL SE HA OBTENIDO EN LAS SIGUIENTES CONDICIONES:

AGUA: 550 ppm

TEMPERATURA AGUA: 15°C

TEMPERATURA AMBIENTE: 20°C

Las máquinas ICE QUEEN sufren variaciones en la producción y en la calidad del hielo en función de lo siguiente:


- a) Temperatura ambiente
- b) Temperatura del agua
- c) Calidad del agua
- d) Nivel de agua en el evaporador.

En los gráficos se aprecian las variaciones de producción en función de estas variables.

Como puede observarse, a igualdad de calidad de agua, la producción cae de forma destacable con los incrementos en la temperatura del agua.

ES IMPORTANTE QUE LA TUBERÍA DE ACOMETIDA DEL AGUA NO PASE POR O CERCA DE FOCOS DE CALOR PARA NO PERDER KILOS DE PRODUCCIÓN Y CALIDAD DEL HIELO.

Puede mejorarse la calidad del hielo bajando el nivel de la gaveta del agua. La máquina lleva agujeros para poder bajar dicha cubeta. Hasta 80 mm. en las IQ 550 y 1100. Consecuencia inmediata es una disminución en la producción, véase la línea de puntos en los gráficos. También disminuye la producción de hielo si la calidad del agua mejora. Una aproximación a estas pérdidas de producción puede apreciarse en los gráficos.

3. RECEPCIÓN DE LA MÁQUINA

Inspeccionar exteriormente el embalaje. Si se ve roto o dañado, RECLAMAR AL TRANSPORTISTA.

Para concretar si tiene daños la máquina, DESEMBALARLA EN PRESENCIA DEL TRANSPORTISTA y dejar constancia en el documento de recepción, o en escrito aparte, los daños que pueda tener la máquina. ITV desde el día 1 de mayo 1998 cumple las normativas europeas sobre la gestión de Envases y Residuos de Envases, colocando el distintivo <u>"Punto Verde"</u> en sus embalajes.

Hacer constar siempre el número de la máquina y modelo. Este número esta impreso en cuatro sitios:

Embalaje

Exteriormente lleva una etiqueta con el número de fabricación (1).

Exterior del aparato

En la parte trasera, en una etiqueta igual a la anterior (1).

Exterior del aparato

Pegado en la tapa del cuadro eléctrico, en una etiqueta igual a la anterior (1).Placa de características

En la parte trasera de la máquina.

Verificar que en el interior de la máquina se encuentra completo el KIT de instalación, compuesto por:

-Pala de hielo, acometida ¾ gas, dos filtros y manual.

ATENCIÓN: TODOS LOS ELEMENTOS DEL EMBALAJE (bolsas de plástico, cajas de cartón y palets de madera), NO DEBEN SER DEJADOS AL ALCANCE DE LOS NIÑOS POR SER UNA POTENCIAL FUENTE DE PELIGRO.

4. INSTALACIÓN

4.1. Condiciones del local de emplazamiento

ATENCIÓN

Los modelos GIQ no disponen de unidad condenadora. Van conectadas a una central de frío.

Las máquinas ICE QUEEN están previstas para funcionar con temperatura ambiente entre 5°C y 43°C, y con temperaturas de entrada de agua comprendidas entre 5°C y 35°C.

Por debajo de las temperaturas mínimas puede haber dificultades en el conjunto evaporadorreductor. Por arriba de las máximas la vida del compresor se acorta y la producción queda disminuida.

Las máquinas ICE QUEEN condensadas por aire, toman éste por la parte delantera y lo expulsan por la rejilla trasera.

ATENCIÓN

Si la toma de aire delantera es insuficiente, si la salida queda obstruída total o parcialmente, o por si su colocación va a recibir aire caliente de otro aparato, aconsejamos encarecidamente, en caso de no poder cambiar el emplazamiento de la máquina, INSTALAR UNA CONDENSADA POR AGUA.

Tener en cuenta las consideraciones anteriores si el local de emplazamiento de la máquina tiene humos o es muy polvoriento.

Desaconsejamos instalar las máquinas en las COCINAS, sobre todo las condensadas por aire.

Prevenir que en cualquier caso, la máquina pueda desplazarse hacia el frente a fin de poder efectuar operaciones de mantenimiento.

El piso sobre el que se vaya a situar la máquina deberá ser firme y lo más nivelado posible.

4.2. Agua y desagüe

La calidad del agua influye notablemente en la calidad, dureza y sabor del hielo, y en las condensadas por agua en la vida del condensador.

Tener en cuenta las siguientes consideraciones:

Conexión a la red de agua

Utilizar la acometida flexible (largo 1,3 m.) con las dos juntas filtro suministradas con la máquina. Desaconsejamos la utilización de los grifos con dos salidas y dos llaves ya que por error pueden cerrar el trasero con lo que la máquina se queda sin agua. Esto puede acarrear la llamada por avería sin existir ésta.

La presión debe estar comprendida entre 0,7 y 6 Kg./cm2. (10 / 85 psi.)

Si las presiones sobrepasan estos Valores instalar los elementos correctores necesarios.

Es importante que la línea de agua no pase cerca de focos de calor, o que la acometida flexible o el filtro reciban el aire caliente de la máquina. Esto haría que la producción disminuyese ya que el agua se calentaría excesivamente.

Conexión al desagüe (máquinas condensadas por agua)

El desagüe debe encontrarse más bajo que la máquina, como mínimo 150 mm.

Para evitar malos olores prevenir la instalación de un sifón. El tubo de desagüe conviene tenga un diámetro interior de 30 mm. y con una pendiente mínima de 3 cms. por metro.

4.3. Conexión eléctrica

La máquina se suministra con un cable de 1,5 m. de longitud provisto de una clavija schucko hasta el modelo 400, desde la 550 el cable no lleva clavija.

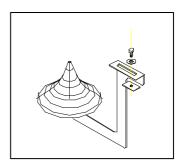
Prevenir la oportuna base de enchufe.

Es conveniente la instalación de un interruptor y de los fusibles adecuados. El voltaje y la intensidad están marcadas en la placa de características y en las hojas técnicas de este

manual. Las variaciones en el voltaje superiores al 10% del indicado en la placa pueden ocasionar averías o impedir que la máquina arranque.

La línea hasta la base del enchufe deberá tener una sección mínima de 2.5 mm2 hasta el modelo 200, y 4 mm2 para el resto de la gama.

Comprobar que el voltaje de la red y el de la placa de características es el mismo.


Importante:

Es necesario prevenir en la instalación eléctrica la oportuna toma de tierra.

En cualquier caso, consultar la legislación vigente, o las normas del país donde se instale.

4.4. Montaje del cono de dispersión

Este accesorio reparte el hielo en los silos, y evita que se apelmace debajo del tubo de salida. Variando su posición puede dirigirse el hielo en cualquier dirección.

5. PUESTA EN MARCHA

5.1. Comprobación previa

a ¿Está la máquina nivelada?

b□ ¿Es el voltaje y la frecuencia igual al de la placa?

c□ ¿Están los desagües conectados y funcionan?

d□** Si es condensada por aire: ¿La circulación de este y la temperatura del local son las adecuadas?

	MÁXIMA	MÍNIMA
AMBIENTE	43° C	5º C
AGUA	35°C	5°C

e□ ** ¿La presión de agua es la adecuada?

MÍNIMA 0,7 Bar

MÁXIMA 6 Bar

5.2. Puesta en marcha

Una vez seguidas las instrucciones de instalación (ventilación, conexiones, temperaturas, etc.) proceder como sigue:

- 1□ Quitar la cubierta superior.
- 2□ Abrir la llave de paso del agua, comprobar que no hay fugas y que el nivel del agua es el adecuado.
- 3□ Accionar a la posición de paro (OFF) el interruptor situado en el cuadro eléctrico.
- 4□ Conectar la máquina a la red eléctrica.
- 5□ Comprobar que **NO EXISTEN BURBUJAS DE AIRE** en el tubo de alimentación de agua (de la cuba de agua al evaporador).

ATENCIÓN

Comprobar que el voltaje y frecuencia de la red coinciden con los marcados en la placa de características.

- 1□ Accionar a la posición de marcha el interruptor. Ahora todos los elementos de la máquina deben funcionar excepto el ventilador (máquinas condensadas por aire), que arrancará cuando la presión de ALTA suba. Los pilotos, excepto el VERDE de entrada de corriente, deben estar apagados. Si no ocurriese así ver las secciones de REGULACIÓN E INCIDENCIAS.
- 2□ Comprobar que las palas del ventilador no rozan y que ningún tubo de la instalación frigorífica vibra.

5.3. Comprobación y regulación del nivel en la cuba de agua

- 1□ Comprobar que con la máquina funcionando, el nivel de agua en la cubeta no baje tanto que haga disparar el micro-magnético de "FALTA AGUA". Si ocurriera, con la presión superior a 1kg/cm2, y con los filtros en buen estado: SUBIR EL NIVEL doblando el brazo del flotador.
- 2□ Ahora, parar la máquina (interruptor en OFF) y esperar a que la válvula de flotador cierre antes de que el agua salga por el rebosadero de máximo nivel. Si ocurre y la presión es inferior a 6 kg./cm2. bajarlo ligeramente hasta conseguir el equilibrio entre los puntos 1 y 2.
- 3□ ****ATENCIÓN:** Por encima de 6 Bar es muy difícil conseguir dicho equilibrio. Instalar un reductor de presión que la mantenga a 4 Bar.

5.4. Comprobación de seguridad

- a□ Cerrar la llave de paso del agua. Observar como desciende el nivel en la cuba del flotador. Cuando quede poco agua la máquina debe pararse.
- b□ Abrir la llave de paso del agua. El nivel subirá en la cuba del flotador y la máquina arrancará después de una temporización de 10 minutos.

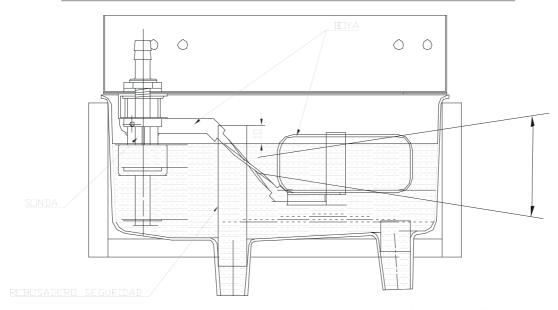
ATENCIÓN

INSTRUIR AL USUARIO SOBRE EL MANTENIMIENTO, HACIÉNDOLE SABER QUE ÉSTE, ASÍ COMO LAS AVERÍAS PRODUCIDAS POR SU OMISIÓN NO ESTÁN INCLUIDAS EN LA GARANTÍA.

SE HACE NECESARIO REALIZAR UNA REVISION DE FUNCIONAMIENTO A LOS 15 DIAS DE LA INSTALACIÓN DE LA MÁQUINA.

6. REGULACIONES

6.1. Válvula de expansión


SE RECOMIENDA NO ACTUAR SOBRE LA VALVULA DE EXPANSIÓN.

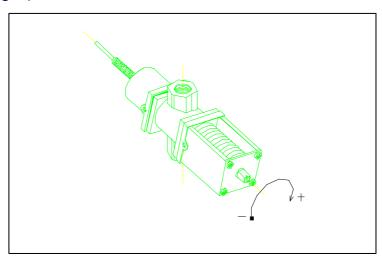
6.2. Nivel de agua

La función del nivel de agua es mantener el flujo necesario de ésta en el evaporador y con el micro magnético que incorpora, parar el funcionamiento de la máquina hasta que el agua llegue de nuevo a la cubeta.

El nivel óptimo se encuentra en la horizontal que señala la figura, y su regulación se hace siguiendo las indicaciones de la misma.

REGULACION DE LA VALVULA DE FLOTADOR IQ.

doblar hacia arriba para subir el nivel y hacia abajo para descenderlo (coger solo por el brazo metalico NUNCA PUR LA BUYA)



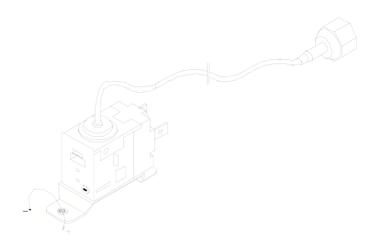
6.3. Válvula presostática de agua

Debe mantener una presión en ALTA (descarga) de 16.5 bar (232-238 psi) que equivalen a una temperatura de agua en la salida de 40° C.

Estos valores son validos cuando el agua llega a menos de 32°C, por arriba de esta temperatura, la presión y la temperatura de salida del agua aumentan.

REGULACIÓN: Girando en sentido horario, la válvula abre. (Disminuye la presión y la temperatura del agua).

6.4. Presostato de ventilador (condensación aire)


El presostato controla la alta presión por paro y marcha del ventilador. El diferencial es fijo 1 kg./cm2 (14psi).

La presión dE trabajo debe ser entre (15.5 - 18 Bar). El presostato conectará el ventilador cuando detecte una presión de 18 Bar y desconectará a 15.5 Bar. Por debajo de esta presión puede haber dificultades en el funcionamiento del motorreductor.

Por arriba de ella la vida del compresor se acorta y la producción de hielo disminuye.

Girando en el sentido horario se incrementa la presión. Una vuelta equivale aproximadamente a 1,5 kg./cm2.

Presostato de seguridad (Alta presión)

El presostato aquí hace la función de seguridad por excesiva presión de Descarga que puede ser debida:

- Condensador sucio, mala circulación de aire o temperatura del local muy elevada. (Máquinas condensadas por aire)
- Falta de agua o temperatura de esta muy elevada.
 (Máquinas condensadas por agua)

6.5. Temporizador de arranque

Este elemento mantiene una espera durante 10 minutos cada vez que la máquina arranca. Con esto se consigue que el hielo este suelto en el evaporador y que el reductor arranque en vacío.

SOLO ACTÚA CUANDO LA MAQUINA ESTA CALIENTE.

6.6. Elementos de protección de la máquina

Protector magneto-térmico o disyuntor.- protege al motor de picos de intensidad para evitar el sobrecalentamiento de los bobinados del mismo. Cuando actúa este elemento, se encenderá una luz indicativo de color rojo especificado como térmico en el panel de pilotos. Se encuentra situado en el cuadro eléctrico, por lo que para acceder a él será necesario quitar la rejilla de aireación y la tapa que lo cubre. Es de rearme manual.

Protector térmico del motor reductor. Una sonda en el estator del motor procederá al corte de la corriente de la maniobra eléctrica de la máquina si la temperatura en el mismo aumenta por encima de los niveles aceptables. Su rearme es automático y su actuación se refleja también con el piloto encendido denominado 'térmico'.

Sonda de nivel de agua. Un micro interruptor de accionamiento magnético situado dentro de la cubeta de agua desconecta la máquina si el nivel del agua desciende por debajo del límite al que viene tarado. En el panel de pilotos se encenderá una luz roja con la denominación de falta de agua. Su rearme es automático.

Micro interruptor de paro por llenado de hielo. Situado frente al motor reductor, apoya su brazo sobre una chapa basculante, de tal forma que si el hielo sube por el tubo de caída de hielo y empuja dicha chapa, el micro interruptor parará la máquina quedando reflejado con el encendido de un piloto de color naranja. Su rearme es automático.

7. PROCEDIMIENTOS PARA REEMPLAZAR O COMPROBAR ELEMENTOS

7.1. Cojinete inferior

Útiles necesarios:

- Destornillador PHILLIPS Nº 2
- Tornillos M 8 (110 mm de largo ó varilla roscada ó 50 mm de largo [*])
- Llave "Allen" de 5 mm
- Martillo nylon.
- Llave fija de 12-13

LOS PASOS NECESARIOS SON LOS SIGUIENTES:

- 1□ Desconectar la máquina.
- 2□ Cerrar el agua.
- 3□ Quitar la tapa inferior.
- 4□ Quitar el tapón de drenaje.
- 5□ Quitar el tornillo lateral que fija el cojinete.
- 6□ Roscar por el mismo agujero de M8 * 50. Al apretar el tornillo el cojinete sale.
- 7□ Comprobar el desgaste: Si este es superior a 0,25 mm., sustituir.
- 8□ Comprobar y/o sustituir las juntas tóricas, colocar un poco de silicona, limpiar el alojamiento en el evaporador y montarlo.

ATENCIÓN **: Que el agujero lateral coincida con el del evaporador.

- 1□ Abrir la llave del agua y comprobar fugas.
- 2□ Remontar la máquina y conectarla a la corriente.
- 3□ ATENCIÓN **: Tirar el hielo producido en los primeros 15 minutos.

7.2. Reductor de velocidad

Útiles necesarios:

- Extractor.
- Tornillos M 8 o 12 (110 mm de largo ó varilla roscada).
- Llave fija de 12-13 (2 unidades).
- Llave fija de 8-9
- Llave 'Allen' de 8 y/o 10 mm mm.
- Tuercas M 8 (2 unidades).
 - 1□ Quitar el tornillo superior.
 - 2□ Quitar los cuatro tornillos que unen las bridas.
 - 3□ Con ayuda del extractor, sacar el reductor.

Montaje:

- 1□ Engrasar el eje.
- 2□ Encarar el reductor con la mano.
- 3□ Roscar el tornillo [*] o la varilla roscada, poner la arandela y con la ayuda de la tuerca, ir bajando el reductor.
- **ATENCIÓN: No golpear nunca, estropearíamos el cojinete inferior.
 - 1□ Encarar el encaje de las bridas.
 - 2□ Quitar el tornillo [*] o la varilla roscada.

Colocar la arandela y apretar hasta que el husillo haga tope con el eje hueco del reductor.

AL SUSTITUIR UN MOTOR REDUCTOR TRIFÁSICO. ES MUY IMPORTANTE CERCIORARSE QUE EL SENTIDO DE GIRO DEL HUSILLO DE CORTE ES EL INDICADO. EN CASO CONTRARIO SE PRODUCIRIA LA EXPULSIÓN DEL COJINETE INFERIOR. ESTE EFECTO SE PRODUCE POR HABER CAMBIADO UNA FASE EN LA CONEXIÓN ELÉCTRICA DEL MOTOR.

7.3. Plato / Brida superior

Útiles necesarios:

- Extractor.
- Destornillador PHILLIPS Nº 2
- Tornillos M 8 o 12 (110 mm de largo ó varilla roscada).
- Llave fija de 12-13 (2 unidades).
- Llave fija de 8-9
- Llaves 'Allen' de 4, 5, 6, 8 y/o 10 mm.
- Tuercas M 8 (2 unidades).
 - 1□ Desmontar el reductor. (Ver: **DESMONTAR EL REDUCTOR**).
 - 2□ Quitar los cuatro tornillos que fijan los soportes. Quitar los soportes.
 - 3□ Quitar los cinco tornillos de unión entre el plato y el evaporador.
 - 4□ Extraer con la mano, y si no fuera posible, con la ayuda del extractor.

 Montaje:
 - 1□ Limpiar, el alojamiento y el cuello del plato.
 - 2□ Montar el plato.

ATENCIÓN: **El final de la rampa de salida tiene que quedar a la derecha de la ventana del evaporador.

ATENCIÓN: a. Impregnar de grasa los labios de los retenes (según versiones). Tener mucho cuidado para no dañarlos.

Poner los cinco tornillos de unión Plato-Evaporador.

- 1□ Colocar los soportes.
- 2□ Montar el reductor. (Ver: MONTAR EL REDUCTOR)

7.4. Cojinete superior (según modelos)

Útiles necesarios:

- Extractor.
- Destornillador PHILLIPS Nº 2
- Tornillos M 8 o 12 (110 mm de largo ó varilla roscada).
- Llave fija de 12-13 (2 unidades).
- Llave fija de 8-9.
- Llaves 'Allen' de 4, 5, 6, 8 y 10 mm.

- Tuercas M 8 (2 unidades).
 - 1□ Desmontar el reductor. (Ver: **DESMONTAR EL REDUCTOR**).
 - 2 Desmontar el conjunto plato / brida. (Ver: **DESMONTAR PLATO / BRIDA**).
 - 3□ Quitar el reten superior.
 - 4□ Colocar la arandela extractora y fijarla con el Seger.
 - 5□ Golpear con un martillo de plástico un botador apoyado sobre la arandela extractora.

Montaje:

- 1□ Poner siempre los retenes nuevos, y llenar de grasa (SHELL MULTIFAK EP2 TE) / Cód. 420) los espacios al efecto.
- 2□ Clavar el cojinete.
- 3□ Montar el plato.

ATENCIÓN:** Tener mucho cuidado al montar el plato de no dañar los retenes. Impregnar de grasa los labios de los mismos.

8. INSTRUCCIONES Y PROCEDIMIENTOS DE MANTENIMIENTO Y LIMPIEZA

ATENCIÓN: ** Las operaciones de mantenimiento y limpieza, y las averías producidas por su omisión: No están incluidas en la garantía.

Solamente si Se efectúa un buen mantenimiento, la máquina seguirá produciendo buena calidad de hielo y estará exenta de averías.

Los intervalos de mantenimiento y limpieza dependen de las condiciones del local de emplazamiento y de la calidad del agua.

ATENCIÓN: ** Como mínimo una revisión y limpieza deberá hacerse cada seis meses.

En lugares muy polvorientos, la limpieza del condensador puede ser necesaria efectuarla cada mes.

TABLA DE MANTENIMIENTO

ACTUACIÓN	MENSUAL	TRIMESTRAL	SEMESTRAL	ANUAL	BIENAL	UNIDAD T
Limpieza condensador aire	+++	+++	***	***	***	30 minutos
Limpieza condensador agua				000	***	90 minutos
Revisión cojinete inferior			000	***	***	60 minutos
Revisión cojinete superior					***	90 minutos
Limpieza circuito agua Fabricación		000	000	***	***	45 minutos
Limpieza sanitaria		000	000	***	***	30 minutos
Limpieza motorreductror	+++	+++	***	***	***	30 minutos
Nivel aceita en reductor				***	***	60 minutos
Limpieza/cambio filtros de agua	+++	+++	***	***	***	30 minutos
Engrase cojinete superior					***	30 minutos
Cambio de aceite en reductor					***	60 minutos
Limpieza exterior						

■ Dependiendo de las condiciones del local.

□□□ Dependiendo de las condiciones y calidad del agua.

■■ A REALIZAR POR EL USUARIO

****** IMPRESCINDIBLE

LAS OPERACIONES DE MANTENIMIENTO Y LIMPIEZA Y LAS AVERÍAS PRODUCIDAS POR SU OMISIÓN *NO ESTÁN INCLUIDAS EN LA GARANTÍA.*

El instalador facturara los viajes, tiempo y materiales empleados en estas operaciones.

Si el cable de alimentación está dañado debe ser sustituido por el Servicio Técnico o personal cualificado.

**ATENCIÓN: Para todas las operaciones de limpieza y mantenimiento: desconectar la máquina de la corriente eléctrica.

8.1. Condensador de agua

- 1) Desconectar la máquina.
- 2) Desconectar la entrada de agua o cerrar el grifo.
- 3) Desconectar la entrada y salida de agua del condensador.
- 4) Preparar una solución al 50% de ácido fosfórico y agua destilada o desmineralizada.
- 5) Hacerla circular por el condensador. (La mezcla es mas efectiva caliente entre 35° y 40° C-)

NO UTILIZAR ÁCIDO CLORHÍDRICO.

8.2. Condensador de aire

- 1) Desconectar la máquina.
- 2) Desconectar la entrada de agua o cerrar el grifo.
- 3) Limpiar con ayuda de un aspirador, brocha no metálica o aire a baja presión.

8.3. Evaporador / Cuba de agua

- 1) Desconectar la máquina.
- 2) Quitar el tapón de drenaje situado en el cojinete inferior. Colocar un recipiente para recoger el agua.
- 3) Dejar que fluya el agua durante dos o tres minutos.
- 4) Cerrar la entrada de agua y poner el tapón.
- 5) Preparar una solución al 50% de ácido fosfórico y agua destilada. No utilizar salfumán ácido clorhídrico. Verter esta solución lentamente en I cuba de agua (quitar la tapa). La mezcla es más efectiva con el agua entre 35°C. y 40°C.
- 6) Dejar que la solución actúe 20 minutos.
- 7) Quitar el tapón inferior y vaciar el conjunto. Poner el tapón.
- 8) Volver a llenar el sistema hasta el nivel máximo de la cuba de agua con la misma solución. Conectar la máquina y esperar que pare por falta de agua.

ATENCIÓN: ** Tirar el hielo fabricado con este procedimiento.

9) Desconectar la máquina, quitar el tapón, abrir el agua y dejar que corra durante dos o tres

minutos.

- 10) Cerrar el agua, poner el tapón, abrir el agua y conectar la máquina.
 - ** En este punto empieza la limpieza sanitaria.
- 11) Ir añadiendo poco a poco lejía en la cuba de agua al menos durante cinco minutos. Dejar la maquina produciendo hielo al menos 15 minutos.

ATENCIÓN: ** Tirar el hielo fabricado con este procedimiento.

- 12) Desconectar la máquina, montar la tapa y la cubierta, revisas fugas de agua. Cambiar la junta del tapón inferior si es necesario.
- 13) Cambiar el elemento filtrante si es necesario. (Máquinas provistas de filtro de 5 mm.).
- 14) Conectar la máquina.

9. CONSIDERACIONES DEL USO DEL REFRIGERANTE R404

- El R404 es una mezcla de 3 gases en fase de liquido. Cuando se evapora, los 3 gases quedan separados.
- Las recargas y purgas deben hacerse por la parte de líquido (final del condensador o calderín)
- Cuando se sustituye un compresor, lavar la instalación, hacer un barrido con Nitrógeno seco CAMBIAR EL DESHIDRATADOR por uno adecuado al 404 y que además tenga capacidad ANTIACIDO.
- Si hay que reponer aceite en el circuito, utilizar aceites específicos par a 404 (POE). En caso de duda, consultar siempre con el fabricante del equipo.
- Si se han producido fugas en las zonas del circuito donde el R404 está en forma de gas, y si la cantidad a rellenar es superior a un 10% de la carga total, TIRAR TODO EL GAS DE LA INSTALACIÓN Y PROCEDER A CARGAR DE NUEVO (SIEMPRE LIQUIDO).

Si se carga por baja, esperar a mover el compresor al menos 1 hora, para permitir que el liquido pase a gas.

10. TABLA DE INCIDENCIAS

PROBLEMA	CAUSA PROBABLE	REMEDIO
1) La máquina no funciona.	A) No hay energía eléctrica.	A) Comprobar la línea de alimentación.
	B) No hay agua en la cubeta.	B) Falta de agua en la red. Filtros obstruidos: Grifo cerrado.
	C) El micro de paro no conecta.	C) Regular o cambiar el micro.
	D) Todo parece estar bien.	D) Comprobar: contactor, disyuntor, pres ostatos , temporizador, c ableado, instalación eléctrica y micr o magnético.
	E) Temporizador averiado.	E) Sustituir.
2) Todo funciona, pero no hace hielo.	A) Fuga de refrigerante.	A) Localizar fuga, reparar y recargar de refrigerante.
	B) Compresor defectuoso. C) Válvula expansión cerrada o estropeada o capilar obstruido	B) Cambiar compresor. C) Abrir el paso de la válvula o sustituir válvula (cambiar el capilar y el filtro deshidratador)
	D) Agua / humedad en el sistema frigorífico.	D) Cambiar aceite al compresor, cambiar capilar y deshidratador (colocar uno antiácido), efectuar vacío de la instalación, calentando ligeramente todos los componentes y cargar refrigerante.
3) La máquina funciona intermitentemente.	A) Presión de la red de agua inferior a 0'7 BAR	A) Este problema se agudiza con el tamaño de las máquinas. En las pequeñas, a veces es posible solucionarlo con la regulación de la boya en la cuba de agua SI ASÍ NO FUESE POSIBLE INSTALAR UN GRUPO DE PRESIÓN
	B) Presión de la red de agua normal (0'7 a 6'5 BAR)	B) Regular el nivel de agua en la cuba de agua.
4) El compresor funciona intermitente.	A) Condens ador sucio	A) Limpiar
	B) Circulación de aire obstruida.	B) Restablecer la circulación de aire
	C) Ventilador del condensador defectuoso.	C) Comprobar y reemplazar
	D) Presostato del ventilador defectuoso o mal regulado.	D) Comprobar y regular o cambiar
	E) Presostato de seguridad defectuoso.	E) Comprobar y cambiar
	F) Sistema de arranque del compresor defectuoso.	F) Comprobar y cambiar
	G) Válvula presostática de agua mal regulada o defectuosa.	G) Regular, reparar o cambiar.
	H) Bajo voltaje. Línea de insuficiente sección.	H) Comprobar la sección de los conductores. Cambiarlos si s on insuficientes.

PROBLEMA	CAUSA PROBABLE	REMEDIO
5) Hielo muy húmedo.	A) Temperatura ambiente muy alta (> de 35° C)	A) Cambiar el emplazamiento de la maquina, si es posible.
	B) Temperatura del agua muy alta (>	B) Revisar el tendido de tuberías
	de 30°	y filtr o por si el aire de
		condensación u otro foc o de
		calor c alienta el agua en las
	0) A da hair artidad (da 4500	tuberías.
	C) Agua de baja calidad (> de 1500	C) Bajar la posición de la cubeta
	ppm)	de agua. Instalar un equipo de
		tratamiento de agua.
	D) Condensador sucio	D) Limpiar
	E) Válvula presostática demasiado	E) Regular o sustituir.
	cerrada o defectuosa.	,
	F) falta de rendimiento en el compresor	F) Sustituir
	G) Fuga de refrigerante	G) Recargar y en caso de fuga,
		reparar.
	H) Bajo nivel de agua en la cuba, el	H) Comprobar las presiones en
	consumo de agua es superior al que entra por la válvula de flotador.	la red de agua. Comprobar que no estén los
		filtros o la válvula de flotador
		embozados
		Regular el nivel de agua.
		Ü
6) Fugas de agua	A) El agua rebosa en la cubeta y cae	A) regular el nivel y si no es
	por el tubo de rebosadero al almacén	posible:
	de hielo.	Reducir la presión de agua.
		La válvula de flotador no
		cierra (cambiar o limpiar)
	B) Juntas tóricas o plana defectuosas	B) Remplazar y eventualmente
	en el cojinete inferior.	siliconar
7) Ruido anómalo en la maquina	A) Ventilador o sus palas en mal estado	A) Fijar o sustituir.
	o suelto	
	B) Tubos o componentes que vibran	B) Cambiar de posición y/o fijar
	C) Ruido en el compresor	C) Sustituir
	Lavar and a second	[A) =:: .
8) Ruido anómalo en el motor del	A) Ventilador trasero suelto	A) Fijarlo
reductor	B) Rodamientos de bolas defectuosos	R) Sustituir al radamiento desado
	Nodamientos de polas defectuosos	B) Sustituir el rodamiento dañado o cambiar el motor.
ı	I	o cambial of motor.
9) Ruido en la caja reductora	A) Rodamiento de bolas defectuoso ,	A) Sustituir la pieza defectuosa o
	sin fines o coronas en mal estado	cambiar la caja reductora.
10) Ruido en el evaporador	A) Cojinetes superior o inferior	A) Limpiarlos, engrasarlos y/o
	defectuoso	sustituirlos
	o sucios	D) D : : :
	B) Husillo y/o evaporador rayado	B) Revisar y reemplazar si es
		necesario

PROBLEMA	CAUSA PROBABLE	REMEDIO
11) Maquina parada. Piloto rojo (TÉRMICO) encendido	A) Posible variación de la tensión de entrada B) Condensador del motor del reductor en mal estado.	A) Comprobar tensión y rearmar disyuntor. B) Sustituir.
	C) Presión de condensación demasiado baja. D) Presión (temperatura) de evaporación demasiado baja.	C) Ajustar el presostato del ventilador (cond. por aire) o la válvula presostática de agua (cond. por agua). Comprobar la carga del refrigerante. D) Ajustar el presostato del ventilador o la válvula presostática de agua o la carga
		del refrigerante o la válvula de expansión.
	F) Cojinete inferior o superior averiados. El husillo puede estar rozando con el evaporador.	F) Cambiar cojinete/s averiado/s. Comprobar que en el evaporador todavía quedan rayas verticales en la zona de roce. Comprobar que el filo de corte del husillo no esta rayado.
	G) Caja reductora con algún cojinete o corona defectuoso o trabado.	G) Sustituir o reparar caja reductora.
	H) Cojinete del motor reductor bloqueado.	H) Reparar o cambiar el motor.